The ‘Massana soil system’ project: untargeted metabolomics to unravel chemical landscapes in Massane forest soils
Main Article Content
Abstract
Advancements in soil analytical techniques offer new insights into ecosystem structure, functions, and dynamics. Metabolomics has the potential to serve as a unique and efficient way to characterize the soil "chemical landscape." Thirty-three soil samples were collected from the Massane old-growth forest reserve, a UNESCO world heritage site located in the Eastern piedmont of the French Pyrenees. The study sites aimed to investigate three types of forest stands, namely beech forests, beech/oak stands, and mixed forest stands, subsets being also defined within stand types based on forest facies. We hypothesized that soil chemical heterogeneity would reflect forest spatial heterogeneity. Non-targeted metabolomics using liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-MS/MS) and molecular network analyses were employed to map the chemical diversity across the sampled sites. This approach unveiled the presence of various compounds, including lipids (fatty acids and their derivatives, sphingolipids, prenol lipids, steroids), terpenoids (triterpenoids and sesquiterpenes), coumarins, and oligopeptides and lipopeptides. Along with the presence of a rich core metabolome, some heterogeneity was also underscored, suggesting unique chemical structures associated with specific types of sampling sites, notably mature beech stands. These results call for a deeper investigation into these specific compounds, with regards to their biological origin and the diversity and heterogeneity of soil microbial communities.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Licence CC-BY 4.0
References
Allard P-M, Péresse T, Bisson J, Gindro K, Marcourt L, Pham VC, Roussi F, Litaudon M, Wolfender J-L 2016. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal Chem 88(6): 3317-3323. https://doi.org/10.1021/acs.analchem.5b04804
Andermann T, Antonelli A, Barrett RL, Silvestro D 2022. Estimating alpha, beta, and gamma diversity through deep learning. Front Plant Sci 13: 839407. https://doi.org/10.3389/fpls.2022.839407
Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, van der Hooft JJJ, Ernst M, Kang KB, Aceves CM, Caraballo-Rodríguez AM, Koester I, Weldon KC, Bertrand S. Roullier C, Sun K, Tehan RM, Boya CA, Christian MH, Gutiérrez M, Ulloa AM, Mora JAT, Mojica-Flores R, Lakey-Beitia J, Vásquez-Chaves V, Zhang Y, Calderón AI, Tayler N, Keyzers RA, Tugizimana F, Ndlovu N, Aksenov AA, Jarmusch AK, Schmid R, Truman AW, Bandeira N, Wang, Dorrestein PC 2020. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 15(6): 1954–1991. https://doi.org/10.1038/s41596-020-0317-5
Avalos M, Garbeva P, Vader L, Van Wezel GP, Dickschat JS, Ulanova D 2022. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 39(2): 249–272. https://doi.org/10.1039/d1np00047k
Bahnmann B, Mašínová T, Halvorsen R, Davey ML, Sedlák P, Tomšovský M, Baldrian P 2018. Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biol Biochem 119: 162–173. https://doi.org/10.1016/j.soilbio.2018.01.021
Bahram M, Peay KG, Tedersoo L 2015. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205(4): 1454–1463. https://doi.org/10.1111/nph.13206
Bai Y, Chen Q, Zhou Y, Fang X, Liu X 2020. Terpenoids in surface soils from different ecosystems on the Tibetan Plateau. Org Geochem 150: 104125. https://doi.org/10.1016/j.orggeochem.2020.104125
Baldrian P 2017. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol Rev 41(2): 109–130. https://doi.org/10.1093/femsre/fuw040
Beccaccioli M, Pucci N, Salustri M, Scortichini M, Zaccaria M, Momeni B, Loreti S, Reverberi M, Scala V 2022. Fungal and bacterial oxylipins are signals for intra- and inter-cellular communication within plant disease. Front Plant Sci 13: 823233. https://doi.org/10.3389/fpls.2022.823233
Bonfante P, Genre A 2015. Arbuscular mycorrhizal dialogues: Do you speak “plantish” or “fungish”? Trends Plant Sci 20(3): 150–154. https://doi.org/10.1016/j.tplants.2014.12.002
Brown RW, Reay MK, Centler F, Chadwick DR, Bull ID, McDonald JE, Evershed RP, Jones DL 2024. Soil metabolomics - current challenges and future perspectives. Soil Biol Biochem 193: 109382. https://doi.org/10.1016/j.soilbio.2024.109382
Cateau E, Larrieu L, Vallauri D, Savoie JM, Touroult J, Brustel H 2015. Ancienneté et maturité : Deux qualités complémentaires d’un écosystème forestier. C R Biol 338(1): 58–73. https://doi.org/10.1016/j.crvi.2014.10.004
Cheng HQ, Giri B, Wu QS, Zou YN, Kuča K 2022. Arbuscular mycorrhizal fungi mitigate drought stress in citrus by modulating root microenvironment. Arch Agron Soil Sci 68(9): 1217–1228. https://doi.org/10.1080/03650340.2021.1878497
Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, DesRochers A, Paré D, Jackson BG, Baldy V 2016. Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J Ecol 104(6): 1527–1541. https://doi.org/10.1111/1365-2745.12644
Colangelo M, Camarero JJ, Gazol A, Piovesan G, Borghetti M, Baliva M, Gentilesca T, Rita A, Schettino A, Ripullone F 2021. Mediterranean old-growth forests exhibit resistance to climate warming. Sci Total Environ 801: 149684. https://doi.org/10.1016/j.scitotenv.2021.149684
Couvillion S, Danczak R, Naylor D, Smith ML, Stratton KG, Paurus VL, Bloodsworth KJ, Farris Y, Schmidt DJ, Richardson RE, Bramer LM, Fansler SJ, Nakayasu ES, McDermott JE, Metz TO, Lipton MS, Jansson JK, Hofmockel KS 2023. Rapid remodeling of the soil lipidome in response to a drying-rewetting event. Microbiome 11(1):34. https://doi.org/10.1186/s40168-022-01427-4
Couvillion S, Yang I, Hermosillo D, Eder J, Bell S, Hofmockel K 2024. Chemodiversity in root exudates: A comprehensive characterization of the exudate metabo-lipidome in a perennial grass. BioRxiv 586263. https://doi.org/10.1101/2024.03.22.586263
Cvejic JH, Putra SR, El-Beltagy A, Hattori R, Hattori T, Rohmer M 2000. Bacterial triterpenoids of the hopane series as biomarkers for the chemotaxonomy of Burkholderia, Pseudomonas and Ralstonia spp. FEMS Microbiol Lett 183(2): 295–299. https://doi.org/10.1111/j.1574-6968.2000.tb08974.x
Dahl MB, Kreyling J, Petters S, Wang H, Mortensen MS, Maccario L, Sørensen SJ, Urich T, Weigel R 2023. Warmer winters result in reshaping of the European beech forest soil microbiome (bacteria, archaea and fungi) - With potential implications for ecosystem functioning. Environ Microbiol 25(6): 1118–1135. https://doi.org/10.1111/1462-2920.16347
Danczak RE, Chu RK, Fansler SJ, Goldman AE, Graham EB, Tfaily MM, Toyoda J, Stegen JC 2020. Using metacommunity ecology to understand environmental metabolomes. Nat Commun 11: 6369. https://doi.org/10.1038/s41467-020-19989-y
Defossez E, Pitteloud C, Descombes P, Glauser G, Allard P, Walker T, Fernandez-Conradi P, Wolfender JL, Pellissier L, Rasmann S 2021. Spatial and evolutionary predictability of phytochemical diversity. PNAS 118(3): e2013344118. https://doi.org/10.1073/pnas.2013344118/-/DCSupplemental
Delamare Deboutteville C, Petit G, Travé J 1957. Introduction à l’étude de la Réserve Naturelle de la Massane. Vie Milieu 221–234
Delcourt HR, Delcourt PA 1988. Quaternary landscape ecology: Relevant scales in space and time. Landsc Ecol 2: 23–44. https://doi.org/10.1007/BF00138906
Delory BM, Callaway RM, Semchenko M 2024. A trait-based framework linking the soil metabolome to plant–soil feedbacks. New Phytol 241(5): 1910–1921. https://doi.org/10.1111/nph.19490
Digel C, Curtsdotter A, Riede J, Klarner B, Brose U 2014. Unravelling the complex structure of forest soil food webs: Higher omnivory and more trophic levels. Oikos 123(10): 1157–1172. https://doi.org/10.1111/oik.00865
Ding S, Lange M, Lipp J, Schwab VF, Chowdhury S, Pollierer MM, Krause K, Li D, Kothe E, Scheu S, Welti R, Hinrichs KU, Gleixner G 2020. Characteristics and origin of intact polar lipids in soil organic matter. Soil Biol Biochem 151: 108045. https://doi.org/10.1016/j.soilbio.2020.108045
Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E, Greiner R, Wishart DS 2016. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 8: 61. https://doi.org/10.1186/s13321-016-0174-y
Duan M, Lu M, Lu J, Yang W, Li B, Ma L, Wang L 2022. Soil chemical properties, metabolome, and metabarcoding give the new insights into the soil transforming process of fairy ring fungi Leucocalocybe mongolica. J Fungi 8(7): 680. https://doi.org/10.3390/jof8070680
Dührkop K, Felix Nothias L, Fleischauer M, Ludwig M, Hoffmann MA, Rousu J, Dorrestein PC, Böcker S 2021. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol 39: 462–471. https://doi.org/10.1101/2020.04.17.046672
Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, Böcker S 2019. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16: 299–302. https://doi.org/10.1038/s41592-019-0344-8
Dussarrat T, Prigent S, Latorre C, Bernillon S, Flandin A, Díaz FP, Cassan C, Van Delft P, Jacob D, Varala K, Joubes J, Gibon Y, Rolin D, Gutiérrez RA, Pétriacq P 2022. Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience. New Phytol 234(5): 1614–1628. https://doi.org/10.1111/nph.18095
Fahy E, Cotter D, Sud M, Subramaniam S 2011. Lipid classification, structures and tools. Biochim Biophys Acta Mol Cell Biol Lipids 1811(11): 637–647. https://doi.org/10.1016/j.bbalip.2011.06.009
Favrot J-C, Servan J, Servat E 1969. Les sols du massif des Albères (Pyrénées-Orientales). Rev For Fr 21: 619–630. https://doi.org/10.4267/2042/20311ï
Fiehn O 2002. Metabolomics - The link between genotypes and phenotypes. Plant Mol Biol 48(1-2): 155–171. https://doi.org/10.1023/A:1013713905833
Fierer N 2017. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15(10): 579–590. https://doi.org/10.1038/nrmicro.2017.87
Gillespie LM, Hättenschwiler S, Milcu A, Wambsganss J, Shihan A, Fromin N 2021. Tree species mixing affects soil microbial functioning indirectly via root and litter traits and soil parameters in European forests. Funct Ecol 35(10): 2190–2204. https://doi.org/10.1111/1365-2435.13877
Gosselin F 2006. An assessment of the dependence of evenness indices on species richness. J Theor Biol 242(3): 591–597. https://doi.org/10.1016/j.jtbi.2006.04.017
Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà AD, Kopriva S, Voges MJEEE, Sattely ES, Garrido-Oter R, Schulze-Lefert P 2020. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28(6): 825–837. https://doi.org/10.1016/j.chom.2020.09.006
Hildebrand GA, Honeker LK, Freire-Zapata V, Ayala-Ortiz C, Rajakaruna S, Fudyma J, Daber LE, Amini Tabrizi R, Chu RL, Toyoda J, Flowers SE, Hoyt DW, Hamdan R, Gil-Loaiza J, Shi L, Dippold MA, Ladd SN, Werner C, Meredith LK, Tfaily MM 2023. Uncovering the dominant role of root metabolism in shaping rhizosphere metabolome under drought in tropical rainforest plants. Sci Total Environ 899: 165689. https://doi.org/10.1016/j.scitotenv.2023.165689
Högberg MN 2006. Discrepancies between ergosterol and the phospholipid fatty acid 18:2ω6,9 as biomarkers for fungi in boreal forest soils. Soil Biol Biochem 38: 3431–3435. https://doi.org/10.1016/j.soilbio.2006.06.002
Hoshino Y, Gaucher EA 2021. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. PNAS 118(25): e2101276118. https://doi.org/10.1073/pnas.2101276118/-/DCSupplemental
Hosseini M, Pereira DM 2023. The chemical space of terpenes: Insights from data science and AI. Pharmaceuticals 16(2): 202. https://doi.org/10.3390/ph16020202
Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Van Der Heijden MGA, Schlaeppi K, Erb M 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9: 2738. https://doi.org/10.1038/s41467-018-05122-7
Jourdan M, Kunstler G, Morin X 2020. How neighbourhood interactions control the temporal stability and resilience to drought of trees in mountain forests. J Ecol 108: 666–677. https://doi.org/10.1111/1365-2745.13294
Katajamaa M, Miettinen J, Orešič M 2006. MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5): 634–636. https://doi.org/10.1093/bioinformatics/btk039
Kim HW, Wang M, Leber CA, Nothias LF, Reher R, Kang KB, Van Der Hooft JJJ, Dorrestein PC, Gerwick WH, Cottrell GW 2021. NPClassifier: A deep neural network-based structural classification tool for natural products. J Nat Prod 84(11): 2795–2807
Larrieu L, Gonin P 2008. L’indice de biodiversité potentielle (IBP) : une méthode simple et rapide pour évaluer la biodiversité potentielle des peuplements forestiers. Rev For Fr 60(6): 727–748. https://doi.org/10.4267/2042/28373ï
Li Y, Beisson F, Ohlrogge J, Pollard M 2007. Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiol 144(3): 1267–1277. https://doi.org/10.1104/pp.107.099432
Lindsay CA, Kinghorn AD, Rakotondraibe HL 2023. Bioactive and unusual steroids from Penicillium fungi. Phytochem 209:113638. https://doi.org/10.1016/j.phytochem.2023.113638
Liu R, Khan RAA, Yue Q, Jiao Y, Yang Y, Li Y, Xie B 2020. Discovery of a new antifungal lipopeptaibol from Purpureocillium lilacinum using MALDI-TOF-IMS. Biochem Biophys Res Commun 527(3): 689–695. https://doi.org/10.1016/j.bbrc.2020.05.021
Lombardi N, Vitale S, Turr ÀD, Reverberi M, Fanelli C, Vinale F, Marra R, Ruocco M, Pascale A, D’Errico G, Woo SL, Lorito M 2018. Root exudates of stressed plants stimulate and attract trichoderma soil fungi. MPMI 31(10): 982–994. https://doi.org/10.1094/MPMI-12-17-0310-R
Lucas-Borja ME, Candel D, Jindo K, Moreno JL, Andrés M, Bastida F 2012. Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions. Plant Soil 354: 359–370. https://doi.org/10.1007/s11104-011-1072-8
Macabuhay A, Arsova B, Walker R, Johnson A, Watt M, Roessner U 2022. Modulators or facilitators? Roles of lipids in plant root–microbe interactions. Trends Plant Sci 27(2): 180–190. https://doi.org/10.1016/j.tplants.2021.08.004
Magri D 2008. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35(3): 450–463. https://doi.org/10.1111/j.1365-2699.2007.01803.x
Majdi N, Araujo TQ, Bekkouche N, Fontaneto D, Garrigue J, Larrieu L, Kamburska L, Kieneke A, Minowa AK, Laumer C, Sabatino R, Sorel D, Stec D, Traunspurger W 2024. Freshwater and limno-terrestrial meiofauna of the Massane Forest Reserve in the Eastern French Pyrenees. Biogeographia 39(1): a032. https://doi.org/10.21426/B639162226
Marty M-C 1981. Réserve Naturelle de la Massane - Travaux 9 - Etude pédologique. Masters’ thesis, Université Paul Sabatier
Mennicken S, Kondratow F, Buralli F, Manzi S, Andrieu E, Roy M, Brin A 2020. Effects of past and present-day landscape structure on forest soil microorganisms. Front Ecol Evol 8:118. https://doi.org/10.3389/fevo.2020.00118
Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA 2018. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9:112. https://doi.org/10.3389/fpls.2018.00112
Mithöfer A, Boland W 2016. Do you speak chemistry? EMBO Rep 17:626–629. https://doi.org/10.15252/embr.201642301
Mohimani H, Gurevich A, Mikheenko A, Garg N, Nothias LF, Ninomiya A, Takada K, Dorrestein PC, Pevzner PA 2017. Dereplication of peptidic natural products through database search of mass spectra. Nat Chem Biol 13(1): 30–37. https://doi.org/10.1038/nchembio.2219
Mueller LO, Borstein SR, Tague ED, Dearth SP, Castro HF, Campagna SR, Bailey JK, Schweitzer JA 2020. Populations of Populus angustifolia have evolved distinct metabolic profiles that influence their surrounding soil. Plant Soil 448:399–411. https://doi.org/10.1007/s11104-019-04405-2
Nacke H, Goldmann K, Schöning I, Pfeiffer B, Kaiser K, Villamizar GAC, Schrumpf M, Buscot F, Daniel R, Wubet T 2016. Fine spatial scale variation of soil microbial communities under European beech and Norway spruce. Front Microbiol 7:2067. https://doi.org/10.3389/fmicb.2016.02067
Naveh Z 2000. What is holistic landscape ecology? A conceptual introduction. Landsc Urban Plan 50(1-3):7–26. https://doi.org/10.1016/S0169-2046(00)00077-3
Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, Protsyuk I, Ernst M, Tsugawa H, Fleischauer M, Aicheler F, Aksenov AA, Alka O, Allard PM, Barsch A, Cachet X, Caraballo-Rodriguez AM, Da Silva RR, Dang T, Garg N, Gauglitz JM, Gurevich A, Isaac G, Jarmusch AK, Kameník Z, Kang KB, Kessler N, Koester I, Korf A, Le Gouellec A, Ludwig M, Martin H C, McCall LI, McSayles J, Meyer SW, Mohimani H, Morsy M, Moyne O, Neumann S, Neuweger H, Nguyen NH, Nothias-Esposito M, Paolini J, Phelan VV, Pluskal T, Quinn RA, Rogers S, Shrestha B, Tripathi A, van der Hooft JJJ, Vargas F, Weldon KC, Witting M, Yang H, Zhang Z, Zubeil F, Kohlbacher O, Böcker S, Alexandrov T, Bandeira N, Wang M, Dorrestein PC 2020. Feature-based molecular networking in the GNPS analysis environment. Nat Methods 17(9): 905-908. https://doi.org/10.1038/s41592-020-0933-6
Obermann A, Bastin S, Belamari S, Conte D, Gaertner MA, Li L, Ahrens B 2018. Mistral and Tramontane wind speed and wind direction patterns in regional climate simulations. Clim Dyn 51: 1059–1076. https://doi.org/10.1007/s00382-016-3053-3
Oddou-Muratorio S, Petit-Cailleux C, Journé V, Lingrand M, Magdalou JA, Hurson C, Garrigue J, Davi H, Magnanou E 2021. Crown defoliation decreases reproduction and wood growth in a marginal European beech population. Ann Bot 128(2): 193–204. https://doi.org/10.1093/aob/mcab054
Olsson PA 2006. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29(4): 303–310. https://doi.org/10.1111/j.1574-6941.1999.tb00621.x
Otasek D, Morris JH, Bouças J, Pico AR, Demchak B 2019. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol 20(1):185. https://doi.org/10.1186/s13059-019-1758-4
Parks SC, Nguyen S, Boulanger MJ, Dillman AR 2022. The FAR protein family of parasitic nematodes. PLoS Pathog 18: e1010424. https://doi.org/10.1371/journal.ppat.1010424
Patti GJ, Yanes O, Siuzdak G 2012. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4): 263–269
Peñuelas J, Sardans J, Filella I, Estiarte M, Llusià J, Ogaya R, Carnicer J, Bartrons M, Rivas-Ubach A, Grau O, Peguero G, Margalef O, Pla-Rabés S, Stefanescu C, Asensio D, Preece C, Liu L, Verger A, Barbeta A, Guerrieri R, Peaucelle M, Marañón-Jiménez S, Bórnez-Mejías K, Mu Z, Descals A, Castellanos A, Terradas J 2017. Impacts of global change on Mediterranean forests and their services. Forests 8(12):463. https://doi.org/10.3390/f8120463
Petrén H, Köllner TG, Junker RR 2023. Quantifying chemodiversity considering biochemical and structural properties of compounds with the R package chemodiv. New Phytol 237(6): 2478–2492. https://doi.org/10.1111/nph.18685
Pétriacq P, Williams A, Cotton A, McFarlane AE, Rolfe SA, Ton J 2017. Metabolite profiling of non-sterile rhizosphere soil. Plant J 92(1): 147–162. https://doi.org/10.1111/tpj.13639
Pluskal T, Castillo S, Villar-Briones A, Orešič M 2010. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11: 395. https://doi.org/10.1186/1471-2105-11-395
Pott R 2018. Changes in the landscape and vegetation under the influence of prehistoric and historic man in Central Europe. In Geographical changes in vegetation and plant functional types. Geobotany Studies. Greller A, Fujiwara K, Pedrotti F eds, Springer, Cham, Switzerland, 359 p.
Quan W, Wang A, Li C, Xie L 2022. Allelopathic potential and allelochemical composition in different soil layers of Rhododendron delavayi forest, southwest China. Front Ecol Evol 10: 963116. https://doi.org/10.3389/fevo.2022.963116
Risser PG 1987. Landscape ecology: State of the art. In Ecological studies: Landscape heterogeneity and disturbance. Turner M ed, Springer, New-York, NY, 240 p.
Rivest D, Paquette A, Shipley B, Reich PB, Messier C 2015. Tree communities rapidly alter soil microbial resistance and resilience to drought. Funct Ecol 29(4): 570–578. https://doi.org/10.1111/1365-2435.12364
Rodrigues AMS, Lebaron P, Downs CA, Stien D 2021. Optimization method for quantification of sunscreen organic ultraviolet filters in coastal sands. J Sep Sci 44(18): 3338–3347. https://doi.org/10.1002/jssc.202100400
Rogozhin EA, Sadykova VS, Baranova AA, Vasilchenko AS, Lushpa VA, Mineev KS, Georgieva ML, Kul'ko AB, Krasheninnikov ME, Lyundup AV, Vasilchenko AV, Andreev YA 2018. A novel lipopeptaibol emericellipsin a with antimicrobial and antitumor activity produced by the extremophilic fungus Emericellopsis alkalina. Molecules 23(11): 2785. https://doi.org/10.3390/molecules23112785
Ruess L, Chamberlain PM 2010. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol Biochem 42(11): 1898–1910. https://doi.org/10.1016/j.soilbio.2010.07.020
Ruess L, Häggblom MMH, Garcõ EJ, Dighton J 2002. Fatty acids of fungi and nematodes - possible biomarkers in the soil food chain? Soil Biol Biochem 34(6): 745–756. https://doi.org/https://doi.org/10.1016/S0038-0717(01)00231-0
Sarabia LD, Boughton BA, Rupasinghe T, Callahan DL, Hill CB, Roessner U 2020. Comparative spatial lipidomics analysis reveals cellular lipid remodelling in different developmental zones of barley roots in response to salinity. Plant Cell Environ 43(2): 327–343. https://doi.org/10.1111/pce.13653
Semchenko M, Barry KE, de Vries FT, Mommer L, Moora M, Maciá-Vicente JG 2022. Deciphering the role of specialist and generalist plant–microbial interactions as drivers of plant–soil feedback. New Phytol 234(6): 1929–1944. https://doi.org/10.1111/nph.18118
Servat E, Servant J 1972. La carte pédologique au 1/100 000. Feuille de Perpignan-Argeles-Sur-Mer. Bulletin de l’Association française pour l’étude du Quaternaire 9: 219–220
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11): 2498–2504. https://doi.org/10.1101/gr.1239303
Shen H, Yan W, Yang X, He X, Wang X, Zhang Y, Wang B, Xia Q 2020. Co-occurrence network analyses of rhizosphere soil microbial PLFAs and metabolites over continuous cropping seasons in tobacco. Plant Soil 452:119–135. https://doi.org/10.1007/s11104-020-04560-x
Song Y, Yao S, Li X, Wang T, Jiang X, Bolan N, Warren CR, Northen TR, Chang SX 2024. Soil metabolomics: Deciphering underground metabolic webs in terrestrial ecosystems. EEH 3(2): 227–237. https://doi.org/10.1016/j.eehl.2024.03.001
Staszel-Szlachta K, Lasota J, Szlachta A, Błońska E 2024. The impact of root systems and their exudates in different tree species on soil properties and microorganisms in a temperate forest ecosystem. BMC Plant Biol 24: 45. https://doi.org/10.1186/s12870-024-04724-2
Stringlis IA, De Jonge R, Pieterse CMJ 2019. The age of coumarins in plant-microbe interactions. Plant Cell Physiol 60(7): 1405–1419. https://doi.org/10.1093/pcp/pcz076
Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S, Harend H, Buegger F, Pritsch K, Koricheva J, Abarenkov K 2016. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME Journal 10: 346–362. https://doi.org/10.1038/ismej.2015.116
Truchy A, Göthe E, Angeler DG, Ecke F, Sponseller RA, Bundschuh M, Johnson RK, McKie BG 2019. Partitioning spatial, environmental, and community drivers of ecosystem functioning. Landsc Ecol 34:2371–2384. https://doi.org/10.1007/s10980-019-00894-9
Tyc O, Song C, Dickschat JS, Vos M, Garbeva P 2017. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25(4): 280–292. https://doi.org/10.1016/j.tim.2016.12.002
Urbanová M, Šnajdr J, Baldrian P 2015. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64. https://doi.org/10.1016/j.soilbio.2015.02.011
Van Eetvelde V, Aagaard Christensen A 2023. Theories in landscape ecology. An overview of theoretical contributions merging spatial, ecological and social logics in the study of cultural landscapes. Landsc Ecol 38: 4033–4064. https://doi.org/10.1007/s10980-023-01736-5
van Tilburg AY, Warmer P, van Heel AJ, Sauer U, Kuipers OP 2022. Membrane composition and organization of Bacillus subtilis 168 and its genome-reduced derivative miniBacillus PG10. Microb Biotechnol 15(5): 1633–1651. https://doi.org/10.1111/1751-7915.13978
Vandekerkhove K, Vanhellemont M, Vrška T, Meyer P, Tabaku V, Thomaes A, Leyman A, De Keersmaeker L, Verheyen K 2018. Very large trees in a lowland old-growth beech (Fagus sylvatica L.) forest: Density, size, growth and spatial patterns in comparison to reference sites in Europe. For Ecol Manage 417: 1–17. https://doi.org/10.1016/j.foreco.2018.02.033
Voloscuk I, Pichler V, Pichlerova M 2013. The primeval beech forests of the Carpathians and ancient beech forests of Germany: joint natural heritage of Europe. Folia Oecologia 40:295–303
Walker TWN, Alexander JM, Allard PM, Baines O, Baldy V, Bardgett RD, Capdevila P, Coley PD, David B, Defossez E, Endara MJ, Ernst M, Fernandez C, Forrister D, Gargallo-Garriga A, Jassey VEJ, Marr S, Neumann S, Pellissier L, Peñuelas J, Peters K, Rasmann S, Roessner U, Sardans J, Schrodt F, Schuman MC, Soule A, Uthe H, Weckwerth W, Wolfender JL, van Dam NM, Salguero-Gómez R (2022) Functional Traits 2.0: The power of the metabolome for ecology. J Ecol 110(1): 4–20. https://doi.org/10.1111/1365-2745.13826
Wang CM, Chen HT, Li TC, et al (2014) The role of pentacyclic triterpenoids in the allelopathic effects of Alstonia scholaris. J Chem Ecol 40:90–98. https://doi.org/10.1007/s10886-013-0376-y
Wang M, Carver JJ, Phelan V V., Weng JH, Jhan YL, Lin SX, Chou CH 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34(1): 828–837. https://doi.org/10.1038/nbt.3597
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH 2004. Ecological linkages between aboveground and belowground biota. Science 304(5677): 1629-1633. https://doi.org/10.1126/science.1094875
Whittaker RH 1960. Vegetation of the Siskiyou Mountains. Ecol Monogr 30(3): 279–338. https://doi.org/10.2307/1943563
Whittaker RJ, Willis KJ, Field R, Whittaker RJ 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28(4): 453–470. https://doi.org/10.1046/j.1365-2699.2001.00563.x
Withers E, Hill PW, Chadwick DR, Jones DL 2020. Use of untargeted metabolomics for assessing soil quality and microbial function. Soil Biol Biochem 143:107758. https://doi.org/10.1016/j.soilbio.2020.107758
Wong-Bajracharya J, Castañeda-Gómez L, Plett KL, Anderson IC. Carrillo Y, Plett JM 2020. Untangling the effect of roots and mutualistic ectomycorrhizal fungi on soil metabolite profiles under ambient and elevated carbon dioxide. Soil Biol Biochem 151:108021. https://doi.org/10.1016/j.soilbio.2020.108021
Wu J 2013. Key concepts and research topics in landscape ecology revisited: 30 years after the Allerton Park workshop. Landsc Ecol 28:1–11. https://doi.org/10.1007/s10980-012-9836-y
Wu J, Hobbs R 2002. Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. Landsc Ecol 17:355–365
Yao J, Huang J, Zang R 2023. Alpha and beta diversity jointly drive the aboveground biomass in temperate and tropical forests. Ecol Evol 13(9): e10487. https://doi.org/10.1002/ece3.10487
Zeller L, Baumann C, Gonin P, Heidrich L, Keye C, Konrad F, Larrieu L, Meyer P, Sennhenn-Reulen H, Müller J, Schall P, Ammer C 2022. Index of biodiversity potential (IBP) versus direct species monitoring in temperate forests. Ecol Indic 136:108692. https://doi.org/10.1016/j.ecolind.2022.108692
Zeng T, Liu Z, Liu H, He W, Tang X, Xie L, Wu R 2019. Exploring chemical and biological space of terpenoids. J Chem Inf Model 59(9):3667–3678. https://doi.org/10.1021/acs.jcim.9b00443
Zhou G, Long F, Zu L, Jarvie S, Peng Y, Zang L, Chen D, Zhang G, Sui M, He Y, Liu Q 2024. Stand spatial structure and microbial diversity are key drivers of soil multifunctionality during secondary succession in degraded karst forests. Sci Total Environ 937:173504. https://doi.org/10.1016/j.scitotenv.2024.173504