RFID tracking for monitoring in-stream wood mobility in a small coastal mediterranean mountainous river: Implementation and preliminary results

Main Article Content

François Charles
https://orcid.org/0000-0002-4557-6092
Lucas Laveissière
Michel Groc
Jean-André Magdalou
Joseph Garrigue

Abstract

Rivers transport a wide variety of materials, ranging from submillimeter-sized sediment particles to entire trees. The transported wood, constituting a vital component of wooded river ecosystems, constantly alters the morphology of watercourses and influences river flow. Given the inherently complex and varied nature of river systems, a thorough exploration of their diversity is justified to identify recurring trends in the dynamics of wood transport. This need becomes imperative in regions already facing prolonged episodes of drought, frequent heatwaves, and an increase in extreme precipitation events. In the specific context of the Massane River, a small Mediterranean mountain river, our study aimed to lay the groundwork for a long-term monitoring of in-stream wood transport by the watercourse. We began by inventorying the wood present in the riverbed in the upper part of the watercourse. This inventory involved measuring, identifying the species, assessing the state of degradation, and geolocating all the pieces of wood present. To estimate the transport, we introduced pieces of wood representative of the fraction of the stock that was potentially mobilizable, marked with RFID tags. The results indicate that wood was present almost throughout the considered section of the watercourse. About one-third of the total volume of the wood stock could be transported during a bankfull flood. RFID tracking revealed that a moderate rise in water level could move such pieces nearly 4 kilometers downstream. This work marks the initiation of a long-term monitoring effort to trace the movement of in-stream wood from the river's source to its estuary and examine the relationship between flood event types and the extent of wood transport.

Article Details

How to Cite
RFID tracking for monitoring in-stream wood mobility in a small coastal mediterranean mountainous river: Implementation and preliminary results. (2025). Life and Environment, 75(1). https://doi.org/10.57890/fssrg805
Section
Articles

References

Aarnink, J., Ruiz-Villanueva, V., Vuaridel, M., 2022. Machine learning and RFID-based large wood tracking in rivers. https://doi.org/10.5194/egusphere-egu22-3974

Abbe, T.B., Montgomery, D.R., 2003. Patterns and processes of wood debris accumulation in the Queets river basin, Washington. Geomorphology 51, 81–107. https://doi.org/10.1016/S0169-555X(02)00326-4

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001

Anderson, N.H., Steedman, R.J., Dudley, T., 1984. Patterns of exploitation by stream invertebrates of wood debris (xylophagy): With 2 figures and 2 tables in the text. SIL Proc. 1922-2010 22, 1847–1852. https://doi.org/10.1080/03680770.1983.11897584

Angermeier, P.L., Karr, J.R., 1984. Relationships between Woody Debris and Fish Habitat in a Small Warmwater Stream. Trans. Am. Fish. Soc. 113, 716–726. https://doi.org/10.1577/1548-8659(1984)113<716:RBWDAF>2.0.CO;2

Benda, L., Hassan, M.A., Church, M., May, C.L., 2005. GEOMORPHOLOGY OF STEEPLAND HEADWATERS: THE TRANSITION FROM HILLSLOPES TO CHANNELS. J. Am. Water Resour. Assoc. 41, 835–851. https://doi.org/10.1111/j.1752-1688.2005.tb04466.x

Benda, L.E., Sias, J.C., 2003. A quantitative framework for evaluating the mass balance of in-stream organic debris. For. Ecol. Manag. 172, 1–16. https://doi.org/10.1016/S0378-1127(01)00576-X

Bilby, R.E., Likens, G.E., 1980. Importance of Organic Debris Dams in the Structure and Function of Stream Ecosystems. Ecology 61, 1107–1113. https://doi.org/10.2307/1936830

Canuel, E.A., Hardison, A.K., 2016. Sources, Ages, and Alteration of Organic Matter in Estuaries. Annu. Rev. Mar. Sci. 8, 409–434. https://doi.org/10.1146/annurev-marine-122414-034058

Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G., Peñuelas, J., 2011. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. 108, 1474–1478. https://doi.org/10.1073/pnas.1010070108

Cassel, M., Dépret, T., Piégay, H., 2017. Assessment of a new solution for tracking pebbles in rivers based on active RFID: A NEW SOLUTION FOR TRACKING PEBBLES IN RIVERS BASED ON ACTIVE RFID. Earth Surf. Process. Landf. 42, 1938–1951. https://doi.org/10.1002/esp.4152

Cassel, M., Piégay, H., Fantino, G., Lejot, J., Bultingaire, L., Michel, K., Perret, F., 2020. Comparison of ground‐based and UAV a‐UHF artificial tracer mobility monitoring methods on a braided river. Earth Surf. Process. Landf. 45, 1123–1140. https://doi.org/10.1002/esp.4777

Clark, M.J., Bennett, G.L., Ryan‐Burkett, S.E., Sear, D.A., Franco, A.M.A., 2022. Untangling the controls on bedload transport in a wood‐loaded river with RFID tracers and linear mixed modelling. Earth Surf. Process. Landf. 47, 2283–2298. https://doi.org/10.1002/esp.5376

Comiti, F., Lucía, A., Rickenmann, D., 2016. Large wood recruitment and transport during large floods: A review. Geomorphology 269, 23–39. https://doi.org/10.1016/j.geomorph.2016.06.016

Gauquelin, T., Michon, G., Joffre, R., Duponnois, R., Génin, D., Fady, B., Bou Dagher-Kharrat, M., Derridj, A., Slimani, S., Badri, W., Alifriqui, M., Auclair, L., Simenel, R., Aderghal, M., Baudoin, E., Galiana, A., Prin, Y., Sanguin, H., Fernandez, C., Baldy, V., 2018. Mediterranean forests, land use and climate change: a social-ecological perspective. Reg. Environ. Change 18, 623–636. https://doi.org/10.1007/s10113-016-0994-3

Gregory, S., Boyer, K., Gurnell, A., 2004. The ecology and management of wood in rivers. J. North Am. Benthol. Soc. 23, 663–665. https://doi.org/10.1899/0887-3593(2004)023<0663:TEAMOW>2.0.CO;2

Gurnell, A.M., Piégay, H., Swanson, F.J., Gregory, S.V., 2002. Large wood and fluvial processes. Freshw. Biol. 47, 601–619. https://doi.org/10.1046/j.1365-2427.2002.00916.x

Haga, H., Kumagai, T., Otsuki, K., Ogawa, S., 2002. Transport and retention of coarse woody debris in mountain streams: An in situ field experiment of log transport and a field survey of coarse woody debris distribution: COARSE WOODY DEBRIS IN MOUNTAIN STREAMS. Water Resour. Res. 38, 1-1-1–16. https://doi.org/10.1029/2001WR001123

Harmon, M.E., Franklin, J.F., Swanson, F.J., Sollins, P., Gregory, S.V., Lattin, J.D., Anderson, N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaemper, G.W., Cromack, K., Cummins, K.W., 1986. Ecology of coarse woody debris in temperate ecosystems, in: Advances in Ecological Research. Elsevier, pp. 59–234. https://doi.org/10.1016/S0065-2504(03)34002-4

Harrison, N.D., Kelly, E.L., 2022. Affordable RFID loggers for monitoring animal movement, activity, and behaviour. PLOS ONE 17, e0276388. https://doi.org/10.1371/journal.pone.0276388

Herbeck, L.A., Larsen, D.R., 1999. Plethodontid Salamander Response to Silvicultural Practices in Missouri Ozark Forests. Conserv. Biol. 13, 623–632. https://doi.org/10.1046/j.1523-1739.1999.98097.x

Jackson, C.R., Sturm, C.A., 2002. Woody debris and channel morphology in first‐ and second‐order forested channels in Washington’s coast ranges. Water Resour. Res. 38. https://doi.org/10.1029/2001WR001138

Jacobson, P.J., Jacobson, K.M., Angermeier, P.L., Cherry, D.S., 1999. Transport, Retention, and Ecological Significance of Woody Debris within a Large Ephemeral River. J. North Am. Benthol. Soc. 18, 429–444. https://doi.org/10.2307/1468376

Johnson, S.L., Swanson, F.J., Grant, G.E., Wondzell, S.M., 2000. Riparian forest disturbances by a mountain flood ? the influence of floated wood. Hydrol. Process. 14, 3031–3050. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<3031::AID-HYP133>3.0.CO;2-6

Kissling, W.D., Pattemore, D.E., Hagen, M., 2014. Challenges and prospects in the telemetry of insects: Insect telemetry. Biol. Rev. 89, 511–530. https://doi.org/10.1111/brv.12065

Kramer, N., Wohl, E., 2017. Rules of the road: A qualitative and quantitative synthesis of large wood transport through drainage networks. Geomorphology 279, 74–97. https://doi.org/10.1016/j.geomorph.2016.08.026

Lienkaemper, G.W., Swanson, F.J., 1987. Dynamics of large woody debris in streams in old-growth Douglas-fir forests. Can. J. For. Res. 17, 150–156. https://doi.org/10.1139/x87-027

MacVicar, B.J., Piégay, H., Henderson, A., Comiti, F., Oberlin, C., Pecorari, E., 2009. Quantifying the temporal dynamics of wood in large rivers: field trials of wood surveying, dating, tracking, and monitoring techniques. Earth Surf. Process. Landf. 34, 2031–2046. https://doi.org/10.1002/esp.1888

Magdalou, J.-A., Hurson, C., Garrigue, J., 2009. Dynamique du bois mort et impact des crues sur quelques espèces riveraines. Trav. Réserve Nat. Massane Travaux de la Massane n°80, 33.

Marcus, W.A., Fonstad, M.A., 2008. Optical remote mapping of rivers at sub‐meter resolutions and watershed extents. Earth Surf. Process. Landf. 33, 4–24. https://doi.org/10.1002/esp.1637

Maser, C., Sedell, J.R., 1994. From the forest to the sea: the ecology of wood in streams, rivers, estuaries, and oceans. St. Lucie Press, Delray Beach, FL.

Mazzorana, B., Ruiz‐Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T., Mao, L., Iroumé, A., Valdebenito, G., 2018. Assessing and mitigating large wood‐related hazards in mountain streams: recent approaches. J. Flood Risk Manag. 11, 207–222. https://doi.org/10.1111/jfr3.12316

Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H., Silliman, B.R., 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560. https://doi.org/10.1890/110004

Mikusinski, G., Angelstam, P., 1997. European woodpeckers and anthropogenic habitat change: a review. Vogelwelt 277–283.

Millington, C.E., Sear, D.A., 2007. Impacts of river restoration on small-wood dynamics in a low-gradient headwater stream. Earth Surf. Process. Landf. 32, 1204–1218. https://doi.org/10.1002/esp.1552

Naiman, R.J., Balian, E.V., Bartz, K.K., Latterell, J.J., 1999. Dead Wood Dynamics in Stream Ecosystems, in: Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests. pp. 23–48.

Naiman, R.J., Décamps, H., 1997. The Ecology of Interfaces: Riparian Zones. Annu. Rev. Ecol. Syst. 28, 621–658. https://doi.org/10.1146/annurev.ecolsys.28.1.621

Nicholson, A.R., Wilkinson, M.E., O’Donnell, G.M., Quinn, P.F., 2012. Runoff attenuation features: a sustainable flood mitigation strategy in the Belford catchment, UK. Area 44, 463–469. https://doi.org/10.1111/j.1475-4762.2012.01099.x

Parisi, F., Innangi, M., Tognetti, R., Lombardi, F., Chirici, G., Marchetti, M., 2021. Forest stand structure and coarse woody debris determine the biodiversity of beetle communities in Mediterranean mountain beech forests. Glob. Ecol. Conserv. 28, e01637. https://doi.org/10.1016/j.gecco.2021.e01637

Pedroli, B., de Blust, G., van Looy, K., van Rooij, S., 2002. Setting targets in strategies for river restoration. Landsc. Ecol. 5–18.

Piégay, H., Thévenet, A., Citterio, A., 1999. Input, storage and distribution of large woody debris along a mountain river continuum, the Drôme River, France. CATENA 35, 19–39. https://doi.org/10.1016/S0341-8162(98)00120-9

Radu, S., 2006. The Ecological Role of Deadwood in Natural Forests, in: Gafta, D., Akeroyd, J. (Eds.), Nature Conservation, Environmental Science and Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 137–141. https://doi.org/10.1007/978-3-540-47229-2_16

Ravazzolo, D., Mao, L., Picco, L., Lenzi, M.A., 2015. Tracking log displacement during floods in the Tagliamento River using RFID and GPS tracker devices. Geomorphology 228, 226–233. https://doi.org/10.1016/j.geomorph.2014.09.012

Roni, P., Beechie, T., Pess, G., Hanson, K., 2015. Wood placement in river restoration: fact, fiction, and future direction. Can. J. Fish. Aquat. Sci. 72, 466–478. https://doi.org/10.1139/cjfas-2014-0344

Rosgen, D.L., 1994. A classification of natural rivers. CATENA 22, 169–199. https://doi.org/10.1016/0341-8162(94)90001-9

Ruiz-Benito, P., Lines, E.R., Gómez-Aparicio, L., Zavala, M.A., Coomes, D.A., 2013. Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition. PLoS ONE 8, e56843. https://doi.org/10.1371/journal.pone.0056843

Ruiz-Villanueva, V., Piégay, H., Gurnell, A.M., Marston, R.A., Stoffel, M., 2016. Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges: Large Wood Dynamics. Rev. Geophys. 54, 611–652. https://doi.org/10.1002/2015RG000514

Russell, M.B., Fraver, S., Aakala, T., Gove, J.H., Woodall, C.W., D’Amato, A.W., Ducey, M.J., 2015. Quantifying carbon stores and decomposition in dead wood: A review. For. Ecol. Manag. 350, 107–128. https://doi.org/10.1016/j.foreco.2015.04.033

Schenk, E.R., Moulin, B., Hupp, C.R., Richter, J.M., 2014. Large wood budget and transport dynamics on a large river using radio telemetry. Earth Surf. Process. Landf. 39, 487–498. https://doi.org/10.1002/esp.3463

Skov, C., Brodersen, J., Nilsson, P.A., Hansson, L.-A., Brönmark, C., 2008. Inter- and size-specific patterns of fish seasonal migration between a shallow lake and its streams. Ecol. Freshw. Fish 17, 406–415. https://doi.org/10.1111/j.1600-0633.2008.00291.x

Sleeter, T.D., Coull, B.C., 1973. Invertebrates associated with the marine wood boring isopod, Limnoria tripunctata. Oecologia 13, 97–102. https://doi.org/10.1007/BF00379623

Steeb, N., Rickenmann, D., Badoux, A., Rickli, C., Waldner, P., 2017. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005. Geomorphology 279, 112–127. https://doi.org/10.1016/j.geomorph.2016.10.011

Tramblay, Y., Somot, S., 2018. Future evolution of extreme precipitation in the Mediterranean. Clim. Change 151, 289–302. https://doi.org/10.1007/s10584-018-2300-5

Wohl, E., 2013. Floodplains and wood. Earth-Sci. Rev. 123, 194–212. https://doi.org/10.1016/j.earscirev.2013.04.009

Wohl, E., Bledsoe, B.P., Fausch, K.D., Kramer, N., Bestgen, K.R., Gooseff, M.N., 2016. Management of Large Wood in Streams: An Overview and Proposed Framework for Hazard Evaluation. JAWRA J. Am. Water Resour. Assoc. 52, 315–335. https://doi.org/10.1111/1752-1688.12388

Wohl, E., Goode, J.R., 2008. Wood dynamics in headwater streams of the Colorado Rocky Mountains. Water Resour. Res. 44, 2007WR006522. https://doi.org/10.1029/2007WR006522

Wohl, E., Lane, S.N., Wilcox, A.C., 2015. The science and practice of river restoration: THE SCIENCE AND PRACTICE OF RIVER RESTORATION. Water Resour. Res. 51, 5974–5997. https://doi.org/10.1002/2014WR016874

Zeng, N., 2008. Carbon sequestration via wood burial. Carbon Balance Manag. 3, 1. https://doi.org/10.1186/1750-0680-3-1

Zittis, G., Hadjinicolaou, P., Klangidou, M., Proestos, Y., Lelieveld, J., 2019. A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Change 19, 2621–2635. https://doi.org/10.1007/s10113-019-01565-w

Similar Articles

You may also start an advanced similarity search for this article.