THE TIMES THEY ARE A CHANGIN': IMPACT OF LAND-USE SHIFT AND CLIMATE WARMING ON THE ODONATE COMMUNITY OF A MEDITERRANEAN STREAM OVER A 25-YEAR PERIOD

F. MORGHAD^{1,2}, F. SAMRAOUI², L. TOUATI³, B. SAMRAOUI^{1,2*}

¹ Department of Biology, University of Annaba, Annaba, Algeria ² Laboratoire de Conservation des Zones Humides, Université 8 Mai 1945 Guelma, Algeria ³ Department of Biology, University of Constantine, Constantine, Algeria * Corresponding author: bsamraoui@gmail.com

FRESHWATER BIODIVERSITY
CLIMATE CHANGE
CO-INERTIA ANALYSIS
LAND-USE CHANGE
MEDITERRANEAN STREAMS
MONITORING
NORTH AFRICA
ODONATA ASSEMBLAGES

ABSTRACT. – We assessed the observed effects of land-use alterations and global warming by analyzing changes in the Odonata community of a Mediterranean stream in northeastern Algeria, sampled at a 25-year interval. Results indicate that species richness has increased from 13 to 21 species. However, the apparent increase in species richness seemed to mirror recent physical and chemical changes brought upon the stream. In particular, these anthropogenic environmental changes seemed to have been driving a large-scale shift in the composition of the Odonata community of Wadi Bouaroug with an influx of widespread, thermophilic species (*Paragomphus genei*, *Crocothemis erythraea*, *Sympetrum fonscolombii*, *Trithemis* spp.) at the expense of rare, stenotypic species (*Coenagrion puella*, *Gomphus lucasii*). In the light of impending and challenging climatic scenarios, we urge that steps should be taken to set up more long-term monitoring schemes and research of North African streams that may provide insights into causal mechanisms of global changes.

INTRODUCTION

There is compelling evidence that our planet is facing a global biodiversity crisis driven by human demography, massive land conversion and climate warming (Hansen et al. 2001). Worldwide, biodiversity depletion is being achieved through extinction, alteration of ecological communities and homogenization. Considerable attention has been given to how changes in land use are adversely affecting biodiversity (Frishkoff et al. 2016). Likewise, climate warming, although global in its impact, is expected to have stronger effects in different parts of the world like in North Africa (Vizy & Cook 2012, Russo et al. 2016), a region considered as a hotspot for biodiversity (Médail & Quézel 1999). However, North African countries are also projected to become global hotspots for drought in the coming decades, thus testing the resilience and adaptive capacity of their inhabitants (World Bank 2017).

Global changes are particularly impacting freshwater ecosystems (Heino *et al.* 2009, Fenoglio *et al.* 2010). If the ecological degradation of streams and rivers is worldwide (Paul & Meyer 2001), these pressures are exacerbated in arid North Africa where human encroachment, water abstraction, reservoir construction, flow regulation and pollution have altered considerably the riverine landscape and modified its function (Hafiane *et al.* 2016). Just like temporary ponds, Mediterranean streams and North African wadis might be ideally suited for monitoring

the effects of habitat conversion and climate change on aquatic communities (Lawrence *et al.* 2010).

Most research focusing on climate-change impact on Mediterranean-climate streams and rivers have been conducted in California (Bêche & Resh 2007), Australia (Chessman 2009) and southern Europe (Bonada et al. 2007, Feio et al. 2010). North Africa's wadis provide harsher conditions to aquatic macroinvertebrates and thus there is a real need to investigate species' and communities' response under increasingly acute conditions. Previous studies have indicated that macroinvertebrate communities are sensitive to both extreme climatic events (Mouthon & Daufresne 2006, Thomson et al. 2012) and climatic oscillations (Bêche & Resh 2007, Bradley & Ormerod 2001). Long-term studies have also demonstrated directional changes in community composition and structure associated with increase in temperature and low-flow stream conditions (Chessman 2009, Daufresne et al. 2009, Ormerod & Durance 2009).

Although there are still some large gaps in our knowledge of the aquatic macroinvertebrates of Algeria and the rest of North Africa, Odonata stand out as a major exception considering that they have been the focus of intensive research for many decades (Samraoui & Menai 1999, Boudot et al. 2009). In addition, the status of most species is also relatively well established (Samraoui et al. 2010) making Odonata suitable indicators to monitor both lotic and lentic freshwater habitats. Indeed, the focus of recent research has been the use of this charismatic group as a low-cost monitoring tool to evaluate river integ-

rity (Simaika & Samways 2009) and to provide reliable assessments of hydrology and habitat alterations of fluvial systems (Ferreras-Romero *et al.* 2009).

In the face of mounting anthropogenic stressors ranging from habitat loss to recreational activities, dragonflies and freshwater biodiversity as a whole are increasingly threatened (Clausnitzer *et al.* 2012). Generally, individual species may respond differentially to changes (Pearson *et al.* 2014). Thus, in an ever changing landscape, it is crucial to reassess the conservation status of species (Rovelli *et al.* 2016). In addition, to mitigate the impacts of global and local alterations and develop sustainable management strategies, there is a need to assess and understand the consequences of ecosystem changes (Hooper *et al.* 2012). Bio-assessments provide such cost-effective and sensitive tools to monitor the consequences of human activities (Rovelli *et al.* 2016).

Odonatological surveys of Wadi Bouaroug started in 1989 with a systematic study being carried out in 1993-1994 (Benchalel & Samraoui 2012). Recently, a parallel survey to our own study was carried out at the same locality (Benchalel *et al.* 2018). The main objectives of our study were to record the impact of environmental changes, principally land use changes and climate warming on the Odonate assemblage of a North African stream and to underscore the value of long-term ecological studies of Mediterranean streams by comparing past and present data.

MATERIALS AND METHODS

Study area: The study area is located in North-eastern Algeria (Numidia) (Fig. 1) which experiences a typically Mediter-

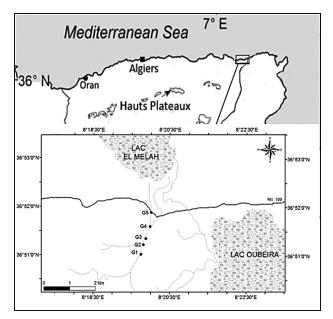


Fig. 1. – Map of Algeria with location of Sampling stations (G1-G5) at Wadi Bouaroug.

ranean climate characterized by a hot, dry season (May to October) and a mild, wet season (November to April). The annual rainfall varies from 700 mm to 950 mm. A large part of the wadi crosses the Natural Reserve of Brabtia before reaching Lake Mellah, a brackish lagoon linked to the Mediterranean Sea by a wide channel.

The Brabtia compound was turned gradually from a natural reserve in the early 1990s to a zoo and an amusement park attracting a large audience in the past ten years. This expansion brought with it logistic problems on how to feed a growing populations of captive lions and dispose of increasing amount of refuse (carcasses of confiscated donkeys destined to feed captive carnivores, plastic bottles left behind by visitors, etc.), which quickly accumulated in an area south of the park and adjacent to Wadi Bouaroug. The transformation of Brabtia park has also involved the creation of an artificial pond at the Brabtia Reserve, the clearing of the riparian forest and the widening of wadi's bed further north, creating in essence another adjacent pond.

The two upstream stations G1 and G2 are both located on the southern area of the Brabtia Reserve which has so far been shielded most from visitors and major alterations while G3 and its surroundings are used as recreational areas by visitors. The downstream stations G4 and G5 are the most impacted stations with considerable changes of their physical characteristics (bed width, water depth, clearing of riparian vegetation and organic pollution) (Benchalel & Samraoui 2012).

Sampling and methodology: A total of five stations along the watercourse were sampled monthly from March 2015 to November 2015, in agreement with the emergence and flight period exhibited by Mediterranean Odonates (Ferreras-Romero & Corbet 1995, Samraoui & Corbet 2000b). At each location, adult Odonates were collected by walking slowly and repeatedly along a transect (50 m). Flying adults were often identified on sight, but some were caught using a butterfly net and these voucher specimens were carried to the laboratory to be identified and stored. We strove to adopt the same sampling methods used by Benchalel & Samraoui (2012). Additionally, the watercourse was also kick-sampled for Odonate larvae on both October 2015 and January 2016. Samples were placed in plastic boxes and identified in laboratory. Nine abiotic descriptors were measured quarterly in each station: water temperature (T: °C), pH, conductivity (µS/cm), dissolved oxygen (O2: %), salinity (mg/l), current velocity (m/s), bed width (m), and water depth (m).

Statistical analysis: Analysis of the relationship between Odonate species and habitat characteristics was carried out using a Co-inertia analysis (CIA) (Dolédec & Chessel 1994). These analyses were made using the software R (R Development Core Team 2017), and the package ade4 (Dray & Dufour 2007).

RESULTS

Despite the relatively short distance (< 2 km) separating the sampling stations, a strong upstream-downstream gradient of water characteristics is evident. Water temperature, water conductivity and dissolved oxygen exhibited a clear spatiotemporal variation along the upstream-downstream gradient (Fig. 2). Similarly, there are considerable differences in current velocity, bed width and water depth between opposing ends of the station gradient (Fig. 3).

If we only compare the mean annual temperature of G1 (the least impacted station) with that of 1993/94, there is an increase of 1 $^{\circ}$ C between the two periods. This is of course a conservative value, well below the 4 $^{\circ}$ C that would result from considering all five stations. The maximum temperature record has also increased, soaring from

Α Water temperature (°C) Station В Nater conductivity (µS/cm) Station C Dissolved oxygen (%) Station

Fig. 2. – Extent of variation of water temperature (A), water conductivity (B), and dissolved oxygen (C), of sampled stations.

21.3 °C in 1993-1994 (Benchalel & Samraoui 2012) to 32.4 °C in 2015. Similarly, the mean annual value of pH has increased from 6.8 in 1993-1994 to 7.7 in 2015 and water depth rose from a mean value of 18.0 cm in 1993-1994 (Benchalel & Samraoui 2012) to 38 cm in 2015. The higher values of conductivity (and salinity) in downstream stations could be explained by the anthropogenic activities surrounding the wadi or by intrusion from Lake Mellah, a lagoon which saw the channel linking it to the sea widened in the early 1990s thereby increasing its water salinity.

In total, 21 Odonate species were recorded (Table I, Fig. 4): 18 of them as adults and three others as larvae (Boyeria irene, Onychogomphus uncatus and Gomphus lucasii). Compared to the 1993-1994 survey, newly recorded species were Erythromma lindenii, Anax parthenope, Paragomphus genei, Brachythemis

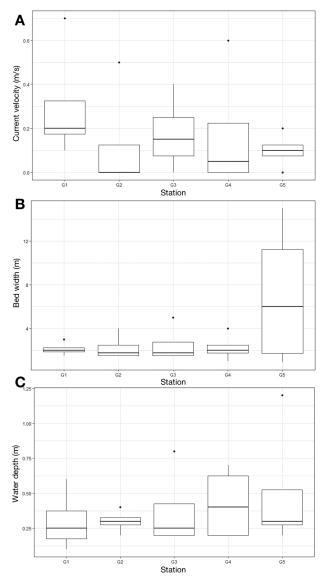


Fig. 3. – Extent of variation of current velocity (A), bed width (B), and water depth (C) of sampled stations.

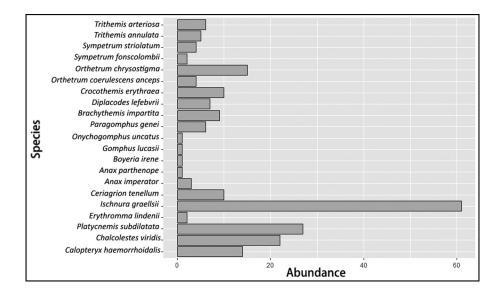


Fig. 4. – Cumulated abundance of adults at Wadi Bouaroug in 2015. *Gomphus lucasii*, *Boyeria Irene* and *Onychogomphus uncatus* were recorded as larvae and set arbitrarily to 1.

impartita, Diplacodes lefebvrii, Orthetrum chrysostigma, Sympetrum fonscolombii, Trithemis annulata and T. arteriosa. The only species missing was C. puella. There was no consistent trend of species richness which varied between 8 and 12 along the upstream-downstream gra-

dient (Table II). However, both the abundance and species richness dipped in the middle of the study area (G3) while the downstream stations (G4 and G5) hosted a greater abundance of flying adults (Table II).

Results of the CIA of Wadi Bouaroug indicated that the first two factorial axes accounted for 96.5 % of the total variation (Fig. 5). The coefficient of vectorial correlation (RV) of CIA reflects the relationship between the species and the sampled environmental descriptors. Despite the reduced number of stations, the RV was significant (RV = 0.84, p = 0.03), thus suggesting the existence of a significant co-structure between the environmental setting and the odonatological community of Wadi Bouaroug. The first axis represented the upstreamdownstream gradient with upstream stations, characterized by collinear variables

like current velocity, and low values of temperature, water level and conductivity, opposed to downstream stations that harbor high values of conductivity, salinity, bed width and water temperature. The first axis of the CIA also highlighted the presence of two distinct assemblages (Fig. 2).

Table I. – Species and subspecies occurrence at Wadi Bouaroug (March-November 2015). "L" indicates larval record only. Records of 1993-1994 are from Benchallel and Samraoui (2012) whereas those of 2015 pertain to this study.

Num	Species	Benchalel & Samraoui: 1993-1994	This study:
1	Calopteryx haemorrhoidalis (Vander Linden, 1825)	1	1
2	Chalcolestes viridis (Vander Linden, 1825)	1	1
3	Platycnemis subdilatata Selys, 1849	1	1
4	Erythromma lindenii (Selys, 1840)	0	1
5	Coenagrion puella (Linnaeus, 1758)	1	0
6	Ischnura graellsii (Rambur, 1842)	1	1
7	Ceriagrion tenellum (de Villers, 1789)	1	1
8	Anax imperator Leach, 1815	1	1
9	Anax parthenope (Selys, 1839)	0	1
10	Boyeria irene (Fonscolombe, 1838)	L	L
11	Gomphus lucasii Selys, 1849	1	L
12	Onychogomphus uncatus (Charpentier, 1840)	L	L
13	Paragomphus genei (Selys, 1841)	0	1
14	Brachythemis impartita (Karsch, 1890)	0	1
15	Diplacodes lefebvrii (Rambur, 1842)	0	1
16	Crocothemis erythraea (Brullé, 1832)	1	1
17	Orthetrum coerulescens anceps (Schneider, 1845)	1	1
18	Orthetrum chrysostigma (Burmeister, 1839)	0	1
19	Sympetrum fonscolombii (Selys, 1840)	0	1
20	Sympetrum striolatum (Charpentier, 1840)	1	1
21	Trithemis annulata (Palisot de Beauvois, 1807)	0	1
22	Trithemis arteriosa (Burmeister, 1839)	0	1
	Total	13	21

Table II. – Species richness and abundance of Odonata at 5 stations of Wadi Bouaroug.

Site	Abundance	Species_richness
G1	40	11
G2	33	12
G3	30	8
G4	49	12
G5	50	10

A group led by *Ischnura graellsii* and *Crocothemis erythraea* located in downstream stations characterized by high values of temperature and conductivity. This assemblage is opposed to another group which includes *Ceriagrion tenellum*, *Orthetrum coerulescens* and to a lesser extent *Calopteryx haemorrhoidalis*, which occupy the relatively well shaded upstream stations, also characterized by high current velocity. The second axis (8.9 % of total inertia) separates G4 from the other downstream station G5 on the basis of pH and dissolved oxygen and the presence of *Erythromma lindenii* and *Anax parthenope*.

DISCUSSION

Over the last 25 years, Wadi Bouaroug has undergone a considerable alteration of its physical characteristics

(bed width, water depth, riparian vegetation and canopy) which have undoubtedly affected its hydrology. Such modifications are known to shape the distribution and abundance of Odonates (Buchwald 1992, Remsburg *et al.* 2008, Kietzka *et al.* 2014). Indeed, previous research has shown that flow velocity may have a substantial impact on aquatic macroinvertebrates (Poff *et al.* 1997, Walters & Post 2011).

Likewise, Odonata larval assemblages are known to be influenced by flow regimes (Hoffmann & Mason 2005). Equally important are the changes in water chemistry with an increase in pH and the apparent rise in salinity, at least in lower reaches of the wadi, possibly triggered by land clearing and urbanization (Kay *et al.* 2001). Such rise in water salinity is known to facilitate colonization by invasive species (Schröder *et al.* 2015).

Over the same time span, the mean water temperature of Wadi Bouaroug has substantially increased (1-4 °C), with notable higher maximum values. This increase is congruent with numerous studies which have documented a sustained rise of temperatures in Algeria over the past four decades (Achite & Ouillon 2016; Zeroual et al. 2017). In addition, the frequency of heat extremes in North Africa is projected to increase (Lelieveld et al. 2016). Temperature may influence directly species distribution and abundance by regulating growth and development (Suhling et al. 2015) or indirectly through dissolved

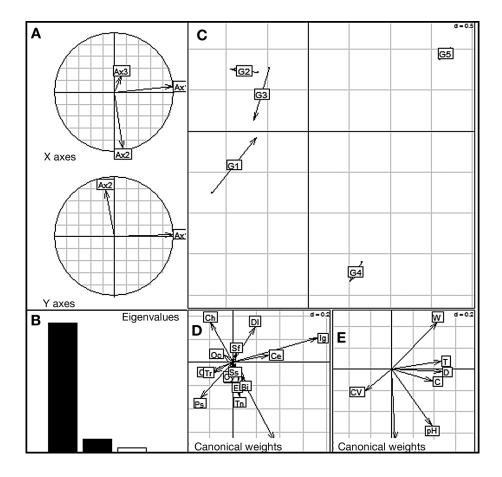


Fig. 5. – Results of the Co-Inertia Analysis (CIA) using 21 Odonates (coded as presence/ absence) and 9 environmental descriptors. A: Components of the standardized principal component analysis of the environmental data set projected onto the co-inertia axes (top) and components of the centred principal component analysis of the odonatological data set projected onto the co-inertia axes (bottom). **B**: Distribution of eigenvalues of the CIA. C: F1 \times F2 factorial plane of the CIA with arrows linking localities according to physico-chemical descriptors (base of arrows) and Odonata (end of arrows). **D**: Distribution of species on the F1 × F2 factorial plane of the CIA. E: Distribution of environmental descriptors on the $F1 \times F2$ factorial plane of the CIA.

oxygen (Rajwa-Kuligiewicz *et al.* 2015) or primary production (Lamberti & Steinman 1997).

Using Earth Observation tools, Benslimane *et al.* (2019) have shown that, over the last 25 years, agriculture has been expanding in a marked way across the dune system north of the study site. The rise of speculative crops (water melons and peanuts) has taken advantage of the unregulated use of ground water. In parallel, the natural vegetation in the same area has shrunk substantially, giving way to cultivated plots or rangelands (Benslimane *et al.* 2019).

Although species richness may have increased significantly, a closer examination of the ecology and origin of the new species paint a different picture of the apparent gain. Newly recorded species are Erythromma lindenii, Anax parthenope, Paragomphus genei, Brachythemis impartita, Diplacodes lefebvrii, Orthetrum chrysostigma, Sympetrum fonscolombii, Trithemis annulata and T. arteriosa. Many of these new arrivals are lentic species with wide dispersal capacities that are indicative of the anthropogenic changes that have occurred within the relatively small watershed of Wadi Bouaroug,

The only species missing is *C. puella* which, as a rare species (Samraoui & Corbet 2000a), can easily be overlooked. However, the species is now considered as extinct in Tunisia (Boudot *et al.* 2009) and its status in Algeria and Morocco is of a great concern (Ferreira *et al.* 2016). A recent study based on molecular data has indicated that the North African *C. puella* could represent a distinct phylogenetic lineage from its European counterpart fueling questions on its conservation status (Ferreira *et al.* 2016). Many of the North African cryptic taxa (*Coenagrion puella*, *C. scitulum*, *Pyrrhosoma nymphula*, *Aeshna cyanea*, and *Cordulegaster boltoni*) that exhibit considerable genetic (Ferreira *et al.* 2016) and/or behavioral differentiation have gone extinct in Algeria or are faring badly (Samraoui *et al.* 2010).

We are thus witnessing a high prevalence of invasive species and probably a displacement of lotic species by widespread and competitive species taking advantage of new habitat opportunities (Pearson *et al.* 2014, Frishkoff *et al.* 2016). The presence of these exotic/opportunistic species has increased species richness with unpredictable impacts on the wadi's community structure and function. A number of studies have shown that intermediate human interference may benefit common species thereby increasing species richness at the expense of stenotopic species (Hoffmann & Mason 2005). This was the case at Wadi Isser where species richness peaked under intermediate level of habitat alteration (Bouchelouche *et al.* 2015)

The species composition of Wadi Bouaroug has shown a marked shift towards including opportunistic species with traits that are associated with desert species (Suhling et al. 2003): Paragomphus genei, Crocothemis erythraea, Trithemis arteriosa, T. kirbyi, Sympetrum fonscolombii, Orthetrum chrysostigma, Anax imperator, A. parthenope,

Brachythemis impartita, and Diplacodes lefebvrii. Most, if not all, of these invasive species are highly mobile and have long been known for their tolerance to arid conditions (Suhling et al. 2003). This pattern fits with the observation of two desert species (Trithemis kirbyi and Selysiothemis nigra) expanding their range northward in Algeria (Yalles-Satha & Samraoui 2017, B.S. unpubl), and, for the former, reaching Europe over the last decade (Boudot & Kalkman 2015).

Elsewhere, the same pattern has been reported with thermophilic invertebrate taxa and fish replacing coldwater invertebrate taxa and fish, respectively (Daufresne et al. 2004). The downstream part of Wadi El Harrach characterized by poor water quality and no canopy cover, was dominated by widespread, salt-tolerant and thermophilic species (Anax imperator, Crocothemis erythraea, Onychogomphus costae, Sympetrum fonscolombii, Trithemis annulata and T. kirbyi) (Hafiane et al. 2016).

The influence of climatic events

There is a striking similarity between our recorded pattern and the influence of severe droughts on perennial or intermittent streams. Indeed, the shift in species composition and structure in our study is reminiscent of changes that occur in riverine residual pools following drought and flow disruption when flowing water invertebrates are replaced by lentic taxa (Boulton & Lake 2008, Bond *et al.* 2008). Similarly, severe droughts do not seem to systematically lower species richness or total abundance while it does provoke a marked shift in community structure (Dewson *et al.* 2007, Bêche *et al.* 2009).

Extreme climatic events may encompass various forms of climatic phenomena (prolonged unseasonal droughts, El Niño-North Atlantic (ENSO) oscillations and unidirectional global warming) and their effects may be difficult to disentangle without the benefit of long-term studies (Mouthon & Daufresne 2006, Bêche & Resh 2007). It is known that stream communities undergo fluctuations due to ENSO oscillations (Bradley & Ormerod 2001). However, this relatively periodic event has to be dissociated with the unidirectional shift produced by climate warming which may alter species composition and abundance of stream ecosystems (Durance & Ormerod 2007).

The status of Algerian streams and wadis

The rich and wide array of wetlands hosted by northeastern Algeria (Samraoui & Samraoui 2008) has been threatened by the irrational land-use of industrial, agricultural and recreational activities. These human-driven changes are amplified by climate change with adverse and irreversible consequences that are compromising vital ecosystem services. Although less impacted than the wadis in the environs of Algiers, where human footprint is at its greatest, Wadi Bouaroug clearly exhibits a typical "urban stream syndrome" (Walsh *et al*. 2005) due to the massive inflow of visitors peaking in summer. An alarming trend has emerged over the last decade with recreational activities across the country expanding and encroaching on protected or sensitive habitats, thus creating new conflicts (Touati *et al*. 2017).

Although their importance is unquestioned, a dearth of long-term ecological studies and monitoring of freshwater macroinvertebrates has been stressed (Jackson and Fureder 2006). For neglected North African streams, which face multiple anthropogenic stressors (Hafiane et al. 2016), such long-term ecological research projects could offer unprecedented insights into the functioning and dynamics of stream populations, communities and ecosystems with implications for global change scenarios. In a period of unparalleled rapid alterations and biodiversity loss currently affecting natural communities and ecosystems (Hooper et al. 2012), it is essential to assess whether current modifications are indicative of change in the medium-to-long term, and North African streams may be ideally suited for providing models to monitor the influence of human activities at different scales. Without high-quality baseline data from the recent past, predicting future responses will be fraught with uncertainties.

CONCLUSIONS

Investigating the impact of land conversion and climate change on freshwater biodiversity is a continuing concern among limnologists and ecologists. However, research on Mediterranean streams has been restricted to Europe, with no previous study investigation of North African wadis where global changes appear to be more acute. An analysis of the Odonate community of Wadi Bouaroug at a 25-y interval indicates a marked shift in species composition towards including more widespread, thermophilic species whereas stenotopic species appear to be on the decline. This trend matches patterns recorded elsewhere in Algeria and abroad.

ACKNOWLEDGEMENTS. – We are most grateful to the Editor and an anonymous reviewer for their helpful comments and suggestions. This research was supported by the Algerian "Ministère de l'Enseignement Supérieur et de la Recherche Scientifique" (MESRS).

REFERENCES

- Achite M, Ouillon S 2016. Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970-2010). *Hydrol Earth Syst Sci* 20: 1355-1372.
- Bêche LA, Resh, VH 2007. Short-term climatic trends affect the temporal variability of macroinvertebrates in California 'Mediterranean' streams. *Freshw Biol* 52: 2317-2339.

- Bêche LA, Connors PG, Resh VH, Merenlender AM 2009. Resilience of fishes and invertebrates to prolonged drought in two California streams. *Ecography* 32: 778-788.
- Benchalel W, Samraoui B 2012. Caractérisation écologique et biologique de l'odonatofaune de deux cours d'eau méditerranéens : l'Oued El-Kébir et l'Oued Bouaroug (Nord-Est de l'Algérie). *Méditerranée* 118: 19-27.
- Benchalel W, Bouziane A, Bouslama Z, Ramdani M, Elmsellem H, Flower R, Ramdani M 2018. Odonata of Wadi Bouarroug (Northeastern Algeria) and environmental determinants of their distribution. *Moroccan J Chem* 6: 78-91.
- Benslimane N, Chakri K, Haiahem D, Guelmami A, Samraoui F, Samraoui B 2019. Anthropogenic stressors are driving a steep decline of hemipteran diversity in dune ponds in northeastern Algeria. *J Insect Conserv*.
- Bonada N, Dolédec S, Statzner B 2017. Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: implications for future climatic scenarios. *Global Change Biol* 13: 1658-1671.
- Bond NR, Lake PS, Arthington AH 2008. The impacts of drought on freshwater ecosystems: an Australian perspective. *Hydrobiologia* 600: 3-16.
- Bouchelouche D, Kherbouche-Abrous O, Mebarki M, Arab A, Samraoui B 2015. The Odonata of Wadi Isser (Kabylia, Algeria): status and environmental determinants of their distribution. *Rev Ecol (Terre Vie)* 70: 248-260.
- Boudot J-P, Kalkman VJ eds 2015. Atlas of the European Dragonflies and Damselflies. KNNV publishers, the Netherlands.
- Boudot JP, Kalkman VJ, Azpilicueta Amorín M, Bogdanović T, Cordero Rivera A, Degabriele G, Dommanget JL, Ferreira S, Garrigós B, Jović M, Kotarac M, Lopau W, Marinov M, Mihoković N, Riservato E, Samraoui B, Schneider W 2009. Atlas of the Odonata of the Mediterranean and North Africa. *Libellula* Suppl 9: 1-256.
- Boulton AJ, Lake PS 2008. Effects of drought on stream insects and its ecological consequences. *In* Lancaster J, Briers RA Eds, Aquatic Insects: Challenges to Populations. CAB International, Wallingford, UK: 81-102.
- Bradley DC, Ormerod SJ 2001. Community persistence among stream invertebrates tracks the North Atlantic Oscillation. *J Anim Ecol* 70: 987-996.
- Buchwald R 1992. Vegetation and dragonfly fauna Characteristics and examples of biocenological field studies. *Vegetatio* 101: 99-107.
- Chessman B 2009. Climatic changes and 13-year trends in stream macroinvertebrate assemblages in New South Wales, Australia. *Global Change Biol* 15: 2791-2802.
- Clausnitzer V, Dijkstra K-DB, Koch R, Boudot J-P, Darwall WRT, Kipping J, Samraoui B, Samways MJ, Simaika JP, Suhling F 2012. Focus on African freshwaters: hotspots of dragonfly diversity and conservation concerns. *Front Ecol Environ* 10: 129-134.
- Daufresne M, Roger MC, Capra H, Lamouroux N 2004. Long-term changes within the invertebrate and fish communities of the Upper Rhone River: effects of climatic factors. *Global Change Biol* 10: 124-140.
- Daufresne M, Lengfellner K, Sommer U 2009. Global warming benefits the small in aquatic ecosystems. *Proc Natl Acad Sci USA* 106: 12788-12793.
- Dewson ZS, James ABW, Death RG 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. *J N Am Benthol Soc* 26: 401-415.

- Dolédec S, Chessel D 1994. Co-inertia analysis: an alternative method for studying species-environment relationship. *Freshw Biol* 31: 277-294.
- Dray S, Dufour AB 2007. The ade4 package: implementing the duality diagram for ecologists. *J Stat Softw* 22: 1-20.
- Durance I, Ormerod SJ 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. *Global Change Biol* 13: 942-957.
- Feio MJ, Coimbra NC, Graça MAS, Nichols SJ, Norris RH 2010. The influence of extreme climatic events and human disturbance on macroinvertebrate community patterns of a Mediterranean stream, over 15 y. J N Am Benthol Soc 29: 1397-1409.
- Fenoglio S, Bo T, Cucco M, Mercalli L, Malacarne G 2010. Effects of global climate change on freshwater biota: A review with special emphasis on the Italian situation. *Ital J Zool* 77: 374-383.
- Ferreira S, Boudot JP, El Haissoufi M, Célio Alves P, Thompson DJ, Brito JC, Watts PC 2016. Genetic distinctiveness of the damselfly *Coenagrion puella* in North Africa: an overlooked and endangered taxon. *Conserv Genet* 17: 985-991.
- Ferreras-Romero M, Corbet PS 1995. Seasonal patterns of emergence in Odonata of a permanent stream in Southwestern Europe. *Aquat Insects* 17: 123-127.
- Ferreras-Romero M, Márquez-Rodriguez J, Ruiz-Garcia A 2009. Implications of anthropogenic disturbance factors on the Odonata assemblage in a Mediterranean fluvial system. *Int J Odonatol* 12: 413-428.
- Frishkoff LO, Karp DS, Flanders JR, Zook J, Hadly EA, Daily GC, M'Gonigle LK 2004. Climate change and habitat conversion favour the same species. *Ecol Lett* 19: 1081-1090.
- Hafiane M, Hamzaoui D, Attou F, Bouchelouche D, Arab A, Alfarhan AH, Samraoui B 2016. Anthropogenic impacts and their influence on the spatial distribution of the Odonata of Wadi El Harrach (North-Central Algeria). *Rev Ecol (Terre Vie)* 71: 239-249.
- Hansen AJ, Neilson RP, Dale VH, Flather CH, Iverson LR, Currie DJ, Shafer S, Cook R, Bartlein PJ 2001. Global change in forests: response of species, communities, and biomes. *BioScience* 51: 765-779.
- Heino J, Virkkala R, Toivonen H 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. *Biol Rev* 84: 39-54.
- Hoffmann TA, Mason CF 2005. Habitat characteristics and the distribution of Odonata in a lowland river catchment in eastern England. *Hydrobiologia* 539: 137-147.
- Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O'Connor MI 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. *Nature* 486: 105-108.
- Jackson JK, Fureder L 2006. Long-term studies of freshwater macroinvertebrates: a review of the frequency, duration and ecological significance. Freshw Biol 51: 591-603.
- Kay WR, Halse SA, Scanlon MD, Smith MJ 2001. Distribution and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia. J N Am Benthol Soc 20: 182-199.
- Kietzka GJ, Pryke JS, Samways MJ 2014. Landscape ecological networks are successful in supporting a diverse dragonfly assemblage. *Insect Conserv Div* 8: 229-237.
- Lamberti AD, Steinman AD 1997. A comparison of primary production in stream ecosystems. *J N Am Benthol Soc* 16: 95-104.

- Lawrence JE, Lunde KB, Mazor RD, Bêche LA, McElravy EP, Resh VH 2010. Long-term macroinvertebrate responses to climate change: implications for biological assessment in Mediterranean-climate streams. J N Am Benthol Soc 29: 1424-1440.
- Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G 2016. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. *Clim Change* 137: 245-260.
- Médail F, Quézel P 1999. Biodiversity hotspots in the Mediterranean Basin: setting conservation priorities. *Conserv Biol* 13: 1510-1513.
- Mouthon J, Daufresne M 2006. Effects of the 2003 heatwave and climatic warming on mollusk communities of the Saône: a large lowland river and of its two main tributaries (France). *Global Change Biol* 12: 441-449.
- Ormerod SJ, Durance I 2009. Restoration and recovery from acidification in upland Welsh streams over 25 years. *J Appl Ecol* 46: 164-174.
- Paul MJ, Meyer JL 2001. Streams in the Urban Landscape. *Annu Rev Ecol Syst* 32: 333-365.
- Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, Fordham DA, Raxworthy CJ, Ryu HY, McNees J, Akçakaya HR 2014. Life history and spatial traits predict extinction risk due to climate change. *Nat Clim Change* 4: 217-221.
- Poff LN, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC, 1997. The natural flow regime. *BioScience* 47: 769-784.
- R Development Core Team 2017. R: A language and environment for statistical computing. Vienna, Austria.
- Rajwa-Kuligiewicz A, Bialik RJ, Rowinski PM 2015. Dissolved oxygen and temperature dynamics in lowland rivers over various timescales. *J Hydro Hydromech* 63: 353-363.
- Remsburg AJ, Olson AC, Samways MJ 2008. Shade alone reduces adult dragonfly (Odonata: Libellulidae) abundance. *J Insect Behav* 21: 460-468.
- Rovelli V, Zapparoli M, Bologna MA 2016. *Coenagrion mercuriale* (Charpentier, 1840) (Azzurrina di Mercurio). *In* Stoch F, Genovesi P Eds, Manuali per il Monitoraggio di Specie e Habitat di Interesse comunitario (Direttiva 92/43/CEE) in Italia: Specie animali. ISPRA, Serie Manuali e linee guida, 141/2016, Rome: 28-45.
- Russo S, Marchese AF, Sillmann J, Immé G 2016. When will unusual heat waves become normal in a warming Africa? *Environ Res Lett* 11: 054016.
- Samraoui B, Corbet PS 2000a. The Odonata of Numidia, northeastern Algeria, Part I: Status and Distribution. Int J Odonatol 3: 11-25.
- Samraoui B, Corbet PS 2000b. The Odonata of Numidia, northeastern Algeria, Part II: Seasonal ecology. *Int J Odonatol* 3: 27-39.
- Samraoui B, Menai R 1999. A contribution to the study of Algerian Odonata. *Int J Odonatol* 2: 145-165.
- Samraoui B, Samraoui F 2008. An ornithological survey of the wetlands of Algeria: Important Bird Areas, Ramsar sites and threatened species. *Wildfowl* 58: 71-98.
- Samraoui B, Boudot JP, Ferreira S, Riservato E, Jovic M, Kalkman VJ, Schneider W 2010. The status and distribution of dragonflies. In Garcia N, Cuttelod A, Abdul Malak D Eds, The Status and Distribution of Freshwater Biodiversity in Northern Africa. Chapter 5. International Union for Conservation of Nature and Natural resources, Gland, Switzerland, Cambridge, U.K., and Malaga, Spain: 51-70.

- Schröder M, Sondermann M, Sures B, Hering D 2015. Effects of salinity on benthic invertebrate and diatom communities in a German lowland river. *Ecol Indic* 57: 236-248.
- Simaika JP, Samways MJ 2009. An easy-to-use index of ecological integrity for prioritizing freshwater sites and for assessing habitat quality. *Biodivers Conserv* 18: 1171-1185.
- Suhling F, Jödicke R, Schneider W 2003. Odonata of African arid regions are there desert species? *Cimbebasia* 18: 207-224.
- Suhling F, Suhling I, Richter O 2015. Temperature response of growth of larval dragonflies an overview. *Int J Odonatol* 18: 15-30.
- Thomson JR, Bond NR, Cunningham SC, Metzeling L, Reich P, Thompson RM, Macnally R 2012. The influences of climatic variation and vegetation on stream biota: lessons from the Big Dry in southeastern Australia. *Global Change Biol* 18: 1582-1596.
- Touati L, Nedjah R, Samraoui F, Alfarhan AH, Gangoso L, Figuerola J, Samraoui B 2017. On the brink: Status and breeding ecology of Eleonora's Falcon *Falco eleonorae* in Algeria. *Bird Conserv Int* 27: 594-606.
- Vizy EK, Cook KH 2012. Mid-twenty-first-century changes in extreme events over northern and tropical Africa. *J Clim* 25: 5748-5767.

- Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan II RP 2005. The urban stream syndrome: current knowledge and the search for a cure. *J N Am Benthol Soc* 24: 706-723.
- Walters AW, Post DM 2011. How low can you go? Impacts of a low-flow disturbance on aquatic insect communities. *Ecol Appl* 21: 163-174.
- World Bank 2017. Beyond scarcity: water security in the Middle East and North Africa. MENA Development Report, World Bank, Washington, DC.
- Yalles-Satha A, Samraoui B 2017. Environmental factors influencing Odonata communities of three Mediterranean rivers: Kebir-East, Seybouse, and Rhumel wadis, northeastern Algeria. *Rev Ecol (Terre Vie)* 72: 314-329.
- Zeroual A, Assani A, Meddi M 2017. Combined analysis of temperature and rainfall variability as they relate to climate indices in Northern Algeria over the 1972-2013 period. *Hydrol Res* 48: 584-595.

Received on August 8, 2018 Accepted on November 27, 2019 Associate editor: C Battisti